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ABSTRACT

A new R = 1/2 K = 32 Quick-Look-In code is described and compared to

the R = 1/2 K = 32 Massey-Costello-code now used in some NASA systems. The

new code, recently discovered by Johannesson, has the "optimum distance

profile" property. This new code is shown, by comparison of Fano sequential

decoding performance on a simulated Gaussian noise channel, to be compu-

tationally superior to the Massey-Costello code. The new code is also shown

to be superior to the Massey-Costello code according to several analytical

code criteria.

* This research was supported by the National Aeronautics and Space
Administration under NASA Grant NSG 5025 at the University of Notre
Dame in liaison with the NASA Goddard Space Flight Center.
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I. Introduction

In research under NASA Grant NGL 15-004-026, this author and D. J. Costello

[1] developed a new class of rate R = 1/2 non-systematic convolutional codes,

called "quick-look-in" (QLI) codes for deep-space applications. The QLI property

requires that the two code-generating polynomials, in D-transform notation,

satisfy

G(1 ) (D) = G (2 ) (D) + D. (1)

The QLI property permits the information sequence to be retrieved from the two

non-systematic encoded sequences simply by adding these sequences bit-by-bit

modulo-two. The QLI property has been found particularly useful in testing the

encoding hardware for deep-space missions, and is considered a highly-desirable

feature if it can be purchased without significant loss of optimality compared

to non-systematic codes without the QLI constraint.

In their paper [1], Massey and Costello gave a K = 48, R = 1/2 QLI code

which had the property that, when truncated at every shorter length, the re-

sulting QLI code exhibited good computational performance and low error proba-

bility when used with sequential decoding. These shortened ,QLI codes have been

adopted by NASA for several deep-space missions with satisfying results.

In other work under NASA Grant NGL 15-004-026, R. Johannesson [2] formulated

the concept of "optimum distance profile" (ODP) convolutional codes and showed

the importance of the ODP property for computational performance when the code

is used with sequential decoding.

The distance profile d of a convolutional code of constraint length K

branches is defined-as follows: Let Dk denote the minimum separation over the

first k branches between encoded sequences resulting from information sequences

differing in their first digit. Then the vector of distances

d= [D, D , ... DK]Y
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is called the distance profile. (Note: In his paper [2], Johannesson uses the

"column distance" di in place of Dk , the relation between these two distances

is Dk = dk+l; Johannesson also uses the memory M of the code rather than the

constraint length K, the relation between M and K is K = M + 1.) The distance

profile d is said to be superior to the distance profile d' if, for the smallest

k such that dk + d', it is the case that dk > d.

In his paper (2], Johannesson gives a QLI code that is also ODP among all

codes for K < 24. More recently, using the software, developed at Notre Dame

for the UNIVAC 1107 under NASA Grant NGL 15-004-026, with the UNIVAC 1108

computer available to him at the Lund Institute of Technology, Sweden, Johannesson

[3] extended his list of QLI ODP codes to K < 51. Where there was more than

one QLI ODP code for a given K, Johannesson chose the one with the smallest

number, Mk, of paths at distance dk for k = K, with any further ties resolved

by choosing the code with largest D7 2 . This latter choice ensures a large free

distance, dfree = D , which is an important determiner of decoding error proba-

bility with sequential decoding.

In the near future,, an R = 1/2, K = 32 convolutional code must be chosen

for the International Ultraviolet Explorer (IUE) spacecraft. At the request

of the Goddard Space Center, we have undertaken a thorough comparison of the

K = 32.code obtained by shortening the Massey-Costello code and the K = 32 ODP

QLI code of Johannesson to see if the possible advantages of the latter code

would justify its choice over the former in the IUE mission. This report

gives the results of this comparison, as well as our recommendation that, in

light of its demonstrated superiority, the Johannesson K = 32 ODP QLI code

should be selected for the IUE spacecraft.
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II. Analytical Comparison of the Codes

Hereafter, we refer to the K = 32 truncated Massey and Costello QLI code

as the M-C QLI code, and we refer to the Johannesson K = 32 ODP QLI code as

the ODP QLI code. The actual generators which define these two codes are

listed in Table I.

We first consider analytical measures of comparison for these two codes.

Using assembly-language software developed for-the IBM 370/158 computer in the

University of Notre Dame Computing Center, we calculated the minimum distance

Dk and number of erroneous paths, , at distance Dk from the correct path for

all k < 74 in the case of the M-C QLI code, and for all k < 72 in the case of

the ODP QLI code. Each of these calculations required well over an hour of

central-processor time. The results of this calculation are given in Table II

and, with the Mk data deleted, in Figure 1.

Recall that the distance profile d involves only Dk for 1 < k < K = 31.

Thus, the ODP QLI code is guaranteed to be superior, in the Dk sense, to the

M-C QLI code only for k < 32. Fig. 1 shows, however, that the ODP QLI code is

in fact superior for all k < 72 which is as far as time permitted the calculation

to extend. Moreover, the superiority of the ODP QLI is evident for k as small

as 6. Even at those points (k = 7, k = 16, k = 63, k = 65, k = 66) where Dk

of the M-C QLI code "catches up" with that of the ODP QLI, Table II shows the

latter code is clearly superior in the smaller number Mk of erroneous paths at

distance Dk from the correct path. In many places over the range of k, we see

from Figure 1 that the ODP QLI code has Dk a full two units greater than the

M-C QLI code.

The importance of the distances Dk is twofold. First, a rapid increase

of these distances as k increases (particularly for k small) is important for

good computational performance with sequential decoding. This follows from



the fact that a larger separation Dk between the correct path and all incorrect

paths of k branches will allow the sequential decoder to reject the incorrect

paths with less searching. Second, the Dk's for k large are important determiners

of decoding error probability since they measure the "long-term" ability of an

incorrect path to appear asan attractive path to the sequential decoder. This

is generally acknowledged by the interest in d = D of convolutional codes.
free *

For two codes with the same d free , the depth k at which first one

obtains dk = dfree is a measure of their relative error probability; the larger

this depth, then the poorer the error probability. For both the M-C QLI code

and the ODP QLI code, we see from Fig. 1 that dfree > 20. Hence, both.codes

will be good from an error probability viewpoint. But the earlier depths at

which the ODP QLI code attains each distance, particularly distance 20, is

strong evidence that this code will be somewhat superior in terms of decoding

error probability.

In Fig. 1, we have also included the profile of Dk for anO0DP code with

K = m as far as this function has been determined to date, namely k < 51. [3]

No code can have a distance profile superior to this one. We see that the

K = 32 ODP QLI code matches this "ultimate" profile for k < 34, and is no more

than one unit inferior for k < 50.

We conclude that, as far as analytical measures are concerned, the K = 32

ODP QLI code is a very good code indeed and clearly superior to the earlier

K = 32 M-C QLI code.

III. Experimental Comparison of the Codes

To put the conclusions drawn from the analytical comparisons of the

previous section to the acid test, software was written for the -IBM 370/158

computer to simulate the additive white Gaussian noise channel and to perform

Fano sequential decoding with both codes. The channel simulated was the
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Gaussian channel with a symbol energy, E, to one-side noise spectral density,

NO, ratio of 0 db or, equivalently since R = 1/2 coding was used, an energy

per information bit, Eb, to NO ratio of +3 db. The channel was quantized to

eight levels (3 bit quantization.)

The results of decoding 10,000 frames of 256 information bits (plus a

"tail" of K - 1 = 31 dummy zeroes) by the Fano algorithm for each code are

given in Table III and in Figure 2. In Figure 2, the computation has been put

on a per bit basis (so that this curve may-be used for other frame lengths)

by dividing the computation to decode the frame by 256 + 31 = 287.

From Figure 2, we see the clear computational superiority of the ODP QLI

code over the M-C QLI code. The practical import of this superiority is that

there will be a significant savings in computer time to perform Fano sequential

decoding when the ODP QLI code is used rather than the M-C QLI code. This is,

of course, in agreement with the conclusions of our analytical comparison of

these two codes.

With both codes, all 10,000 frames were decoded with 100,000 or fewer

computations per frame. No decoding errors were made with either code in the

2.56 x 106 decoding decisions. Thus, one can assert with certainty, from the

simulations, only that the decoding error probability is very small for both

codes. As the simulation required an hour of central-processor time for each

code, it was not feasible to enlarge the number of decoded frames to the point

where the decoding error probability difference between the two codes would be

evident. However, there is a significant difference in the nature of the

computational curves of Figure 2 that supports the analytical conclusion that

the ODP QLI code will also prove to be superior to the M-C QLI code from an.

error probability viewpoint. Note that the ODP QLI curve in Figure 2 has the

expected "Pareto form" over the entire range out to 200 computations per bit,



whereas the M-C QLI curve in Fig. 2 begins to plunge below the Pareto commencing

at about 100 computations per bit. From extensive experience with past simu-

lations, we know that such a "plunge" represents cases where the decoder has,

because of weakness in the code, rushed through to the end of the tree and

accepted a path without all the computation that should have been done to

guarantee that this was the best path through the tree. Such a plunge is a

tell-tale sign that the decoder is entering a region of less reliable decoding.

From these signs, we would estimate that the error probability of the M-C QLI

code would be on the order of 10- 8 while that of the ODP QLI code, which has

not given evidence of similar unreliability in its computational behavior,

would be several times smaller.

IV. Recommendation and Acknowledgment

In view of the clear evidence of its marked superiority over the K = 32

M-C QLI code, we recommend that the K = 32 ODP QLI code found by 'Johannesson

be adopted for the IUE spacecraft. It is unlikely that any K = 32 code,

whether QLI or not, will ever be found which is significantly better than the

recommended code.

We owe an obvious debt of gratitude to Mr. Rolf Johannesson of the Lund

Institute of Technology, Sweden, for furnishing us with the K = 32 ODP QLI

code discussed herein and the other codes he has found in continuation of the

work which he began under NASA Grant NGL 15-004-026. We are also extremely

grateful to Mr. Teofilo C. Ancheta, Jr., Research Assistant under NASA Grant

NSG 5025 for developing all of the software described in this report -- a formi-

dable task since the IBM 370/158 computer is not well matched to the task of

convolutional coding.
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ODP QLI Code M-C QLI Code9 ODP QLI Code M-C QLI Code
k Dk Mk Dk Mk k Dk Mk Dk Mk

1 2 1 2 1 38 14 9 12 2
2 3 2 3 2 39 14 5 12 1
3 3 1 3 1 40 14 2 12 1
4 4 3 4 3 41 15 25 12 1
5 4 2 4 1 42 15 11 13 2
6 5 6 4 1 43 15 3 13 1
7 5 3 5 4 44 15 1 14 6
8 6 11 5 2 45 15 1 14 2
9 6 6 5 1 46 16 10 14 1

10 6 1 5 1 47 16 9 15 8
11 7 12 6 3 48 16 5 15 3
12 7 5 6 2 49 16 5 15 3
13 8 29 7 9 50 16 4 15 2
14 8 12 7 4 51 16 1 15 2
15 8 6 7 3 52 16 1 15 2
16 8 3 8 12 53 17 3 15 1
17 9 18 8 6 54 .17 2 15 . 1
18 9 7 8 2 55 17 1 16 4
19 9 3 8 1 56 18 12 16 2
20 .10 31 8 1 57 18 6 16 1
21 10 13 9 7 58 18 5 17 6
22 10 4 9, 4 59 18 2 17 3
23 10 1 9 2 60 18 1 17 3
24 11 28 9 1 61 18 1 17 2
25 11 13 9 1 62 18 1 17 2
26 11 7 9 1 63 18 1 18 4
27. 11 2 10 4 64 19 2 18 2
28 12 21 10 3 65 19 1 19 11
29 12 9 10 2 66 19 1 19 5
30 12 3 10 1 67 20 4 19 5
31 13 43 11 3 68 20 2 19 2
32 .13 15 11 1 69 20 1 19 1
33 13 11 11 1 70 20 1 19 1
34 13 5 12 9 71 20 1 19 1
35 13 3 12 7 72 20 1 19 1
36 13 1 12 7 73 20 3
37 13 1 12 2 74 20 2

Table II: Minimum Distance Dk between Correct Path and All

Incorrect Paths over k Branches, and the number,

Mk' of Incorrect Paths at Distance Dk for the

R = 1/2 ODP QLI Code and the R = 1/2 M-C QLI Code.



10

Computations N Required Number of Frames Decoded

to Decode Frame R = 1/2 ODP QLI K = 32 Code R = 1/2 M-C QLI K = 32 Code

N < 400 952 875

400 < N < 550 3,182 2,918

550 < N < 600 737 705

600 < N < 850 2,039 1,999

850 < N 1,000 641 611

1,000 < N < 1,500 944 1,147

1,500 < N < 4,000 968 1,085

4,000 < N < 5,000 113 120

5,000 < N < 10,000 179 244

10,000 < N < 20,000 107 128

20,000 < N < 50,000 69 99

50,000 < N < 100,000 69 69

100,000 < N 0 0

Table III. Results of Decoding 10,000 Frames of 256 Information

Bits Each by Fano Sequential Decoding on the Simulated

8-Level Quantized Gaussian Noise Channel with Eb/N = 3 db.
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Figure 2: Comparison of the Computational Performance of the Rate R = 1/2 ODP QLI

K = 32 Code and the Rate R = 1/2 M-C QLI K = 32 Code with Fano Sequential

Decoding on the Simulated 8-level Quantized Gaussian Channel with Eb/No = 3 db,

as Determined by Decoding of 10,000 Frames with 256 Information Bits per Frame.


